Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions

Chenggui Yuan

Swansea University

The 18th Workshop on Markov Processes and Related Topics, Tianjin

The problem, and related works

Main Results

- Large deviation principle (LDP)
- Moderate deviation principle (MDP)
- Central limit theorem (CLT)

Distribution dependent stochastic differential equations (SDEs), also called McKean-Vlasov or mean-field SDEs, is of the form:

 $dX_t = b(t, X_t, \mathscr{L}_{X_t})dt + \sigma(t, X_t, \mathscr{L}_{X_t})dW_t, \ X_0 = \xi \in L^p(\Omega \to \mathbb{R}^d, \mathscr{F}_0, \mathbb{P}).$

 X. Fan, T. Yu and C. Yuan, Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions, accepted by SPA.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- G. Dos Reis, W. Salkeld and J. Tugaut, Freidlin-Wentzell LDP in path space for McKean-Vlasov equations and the functional iterated logarithm law, AAP, 2019.
- Y. Suo and C. Yuan, Central limit theorem and moderate deviation principle for McKean-Vlasov SDEs, Acta Appl. Math., 2021.
- W. Liu, Y. Song, J. Zhai and T. Zhang, Large and moderate deviation principles for McKean-Vlasov SDEs with jumps, PA, 2022.
- W. Hong, S. Li and W. Liu, Large deviation principle for McKean-Vlasov quasilinear stochastic evolution equations, Appl. Math. Optim., 2021.
- A. Budhiraja and X. Song, Large deviation principles for stochastic dynamical systems with a fractional Brownian noise, arXiv:2006.07683.
- X. Gu and Y. Song, Large and moderate deviation principles for path-distribution-dependent stochastic differential equations, Discrete Contin. Dyn. Syst. Ser. S, 2023.
- K. Liu, W. Liu, H. Qiao and F. Zhu, Asymptotic behaviors of small perturbation for multivalued McKean-Vlasov stochastic differential equations, 2023.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Our concerned equation:

$$dX_t = b(t, X_t, \mathscr{L}_{X_t})dt + \sigma(t, \mathscr{L}_{X_t})dB_t^H, \quad X_0 = x,$$
(1)

where $\mathscr{L}_{X_{t}^{\epsilon}}$ denotes the law of X_{t}^{ϵ} , $\epsilon > 0$ is a small parameter, B^{H} is a fractional Brownian motion with Hurst parameter $H \in (1/2, 1)$, the coefficients *b* and σ fulfill some appropriate conditions given in later sections. Moreover, the integral with respect to B^{H} is interpreted in the Wiener sense due to the fact that $\sigma(\cdot, \mathscr{L}_{X^{\epsilon}})$ is deterministic.

The main purpose of this paper is to study the LDP, MDP and CLT of (1) when $\epsilon \rightarrow 0$. More precisely, let X^0 be the limit of X^{ϵ} in some sense, we are going to investigate the asymptotic behaviors for the path of the form

$$Y_t^{\epsilon} := \frac{X_t^{\epsilon} - X_t^0}{\epsilon^H \kappa(\epsilon)}, \ t \in [0, T].$$

• In the case of the LDP, namely $\kappa(\epsilon) = 1/\epsilon^H$, we show that X^{ϵ} satisfies the LDP with speed ϵ^{2H} .

• In the case of the CLT, namely $\kappa(\epsilon) = 1$, we prove that as $\epsilon \to 0$, $\frac{X^{\epsilon} - X^{0}}{\epsilon^{H}}$ converges to a stochastic process which solves a linear equation involving the Lions derivative of the coefficient *b*.

• In the case of the MDP, namely $\kappa(\epsilon) \to \infty$ and $\epsilon^H \kappa(\epsilon) \to 0$ as $\epsilon \to 0$, we derive that Y^{ϵ} satisfies LDP with speed $\kappa^{-2}(\epsilon)$.

Here, let us point out that the MDP for X^{ϵ} refers to the LDP for Y^{ϵ} since the scaling by $\epsilon^{H}\kappa(\epsilon)$ means that the MDP is in the regime between the LDP and the CLT.

For some fixed $H \in (1/2, 1)$. we consider $(\Omega, \mathscr{F}, \mathbb{P})$ the canonical probability space associated with fractional Brownian motion with Hurst parameter H such that the canonical process $\{B_t^H; t \in [0, T]\}$ is a *d*-dimensional fractional Brownian motion with Hurst parameter H. Recall that $B^H = (B^{H,1}, \cdots, B^{H,d})$ is a centered Gaussian process, whose covariance structure is defined by

$$\mathbb{E}\left(B_t^{H,i}B_s^{H,j}\right) = R_H(t,s)\delta_{i,j}, \ s,t \in [0,T], \ i,j = 1,\cdots, d$$

with $R_H(t,s) = \frac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H}).$

We denote by \mathscr{E} the set of step functions on [0, T] with values in \mathbb{R}^d . Let \mathcal{H} be the Hilbert space defined as the completion of \mathscr{E} with respect to the scalar product

$$\left\langle (\mathbb{I}_{[0,t_1]},\cdots,\mathbb{I}_{[0,t_d]}),(\mathbb{I}_{[0,s_1]},\cdots,\mathbb{I}_{[0,s_d]})\right\rangle_{\mathcal{H}}=\sum_{i=1}^d R_H(t_i,s_i)$$

$$R_H(t,s) = \int_0^{t \wedge s} K_H(t,r) K_H(s,r) \mathrm{d}r,$$

where $K_H(t, s)$ is the square integrable kernel given by

$$K_H(t,s) = C_H s^{\frac{1}{2}-H} \int_s^t (r-s)^{H-\frac{3}{2}} r^{H-\frac{1}{2}} dr, \ t > s$$

with $C_H = \sqrt{\frac{H(2H-1)}{\mathcal{B}(2-2H,H-1/2)}}$ and \mathcal{B} standing for the Beta function.

Chenggui Yuan

Let (e_1, \cdots, e_d) designate the canonical basis of \mathbb{R}^d , one can introduce the linear operator $K_H^*: \mathscr{E} \to L^2([0, T], \mathbb{R}^d)$ defined by

$$K_H^*(\mathbf{I}_{[0,t]}e_i) = K_H(t,\cdot)e_i.$$

 $\langle K_H^*\psi, K_H^*\phi \rangle_{L^2([0,T],\mathbb{R}^d)} = \langle \psi, \phi \rangle_{\mathcal{H}}$ holds for all $\psi, \phi \in \mathscr{E}$. There exists a *d*-dimensional Wiener process *W* defined on $(\Omega, \mathscr{F}, \mathbb{P})$ such that B^H has the following Volterra-type representation

$$B_t^H = \int_0^t K_H(t,s) dW_s, \ t \in [0,T].$$
⁽²⁾

Moreover, K_H^* has the following representations: for any $\psi, \phi \in \mathcal{H}$,

$$(K_H^*\psi)(t) = \int_t^T \psi(s) \frac{\partial K_H(s,t)}{\partial s} \mathrm{d}s$$

and

$$\langle K_{H}^{*}\psi, K_{H}^{*}\phi \rangle_{L^{2}([0,T],\mathbb{R}^{d})} = \langle \psi, \phi \rangle_{\mathcal{H}} = H(2H-1) \int_{0}^{T} \int_{0}^{T} |t-s|^{2H-2} \langle \psi(s), \phi(t) \rangle_{\mathbb{R}^{d}} \mathrm{d}s \mathrm{d}t.$$
(3)

As a consequence, for any $\psi \in L^2([0,T], \mathbb{R}^d)$, one has

$$\|\psi\|_{\mathcal{H}}^2 \le 2HT^{2H-1} \|\psi\|_{L^2}^2.$$
(4)

Besides, one can show that $L^{1/H}([0,T], \mathbb{R}^d) \subset \mathcal{H}$.

Next, we define the operator $K_H : L^2([0,T], \mathbb{R}^d) \to I_{0+}^{H+1/2}(L^2([0,T], \mathbb{R}^d))$ by

$$(K_H f)(t) = \int_0^t K_H(t,s) f(s) \mathrm{d}s,$$

where I_{0+}^{α} is the left-sided fractional Riemann-Liouville integral operator of order $\alpha(>0)$ given by

$$I_{0+}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x \frac{f(y)}{(x-y)^{1-\alpha}} dy, \ f \in L^1([0,T], \mathbb{R}^d), \ x \in (0,T).$$
(5)

Let us mention that the space $I_{0+}^{H+1/2}(L^2([0,T], \mathbb{R}^d))$ is the fractional version of the Cameron-Martin space. Finally, we denote by $R_H = K_H \circ K_H^* : \mathcal{H} \to I_{0+}^{H+1/2}(L^2([0,T], \mathbb{R}^d))$ the operator

$$(R_H\psi)(t) = \int_0^t K_H(t,s)(K_H^*\psi)(s) ds.$$
 (6)

Since $I_{0+}^{H+1/2}(L^2([0,T],\mathbb{R}^d)) \subset C^H([0,T],\mathbb{R}^d)$, we know that for any $\psi \in \mathcal{H}$, $R_H \psi$ is Hölder continuous of order H, i.e.

$$R_H \psi \in C^H([0,T], \mathbb{R}^d), \ \psi \in \mathcal{H}.$$
(7)

$$(R_H\psi)(t) = \int_0^t \left(\int_0^s \frac{\partial K_H}{\partial s}(s,r)(K_H^*\psi)(r)\mathrm{d}r\right)\mathrm{d}s.$$
(8)

The Lions derivative

For any $\theta \in [1, \infty)$, $\mathscr{P}_{\theta}(\mathbb{R}^d)$ stands for the set of θ -integrable probability measures on \mathbb{R}^d , and define the L^{θ} -Wasserstein distance on $\mathscr{P}_{\theta}(\mathbb{R}^d)$ as follows

$$\mathbb{W}_{\theta}(\mu,\nu) := \inf_{\pi \in \mathscr{C}(\mu,\nu)} \left(\int_{\mathbb{R}^d \times \mathbb{R}^d} |\mathbf{x} - \mathbf{y}|^{\theta} \pi(\mathrm{d} \mathbf{x},\mathrm{d} \mathbf{y}) \right)^{\frac{1}{\theta}}, \ \mu,\nu \in \mathscr{P}_{\theta}(\mathbb{R}^d).$$

Here $\mathscr{C}(\mu, \nu)$ denotes the set of all probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ and ν .

Definition

 $\mathsf{Let} f:\,\mathscr{P}_2(\mathbb{R}^d)\to\mathbb{R} \text{ and }g:\mathbb{R}^d\times\,\mathscr{P}_2(\mathbb{R}^d)\to\mathbb{R}.$

(1) f is called *L*-differentiable at $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, if the functional

$$L^{2}(\mathbb{R}^{d} \to \mathbb{R}^{d}, \mu) \ni \phi \mapsto f(\mu \circ (\mathrm{Id} + \phi)^{-1}))$$

is Fréchet differentiable at $0 \in L^2(\mathbb{R}^d \to \mathbb{R}^d, \mu)$. That is, there exists a unique $\gamma \in L^2(\mathbb{R}^d \to \mathbb{R}^d, \mu)$ such that

$$\lim_{\|\phi\|_{L^2_{\mu}} \to 0} \frac{f(\mu \circ (\mathrm{Id} + \phi)^{-1}) - f(\mu) - \langle \gamma, \phi \rangle_{\mu}}{\|\phi\|_{L^2_{\mu}}} = 0,$$

where $\langle \gamma, \phi \rangle_{\mu} = \int_{\mathbb{R}^d} \langle \gamma(x), \phi(x) \rangle_{\mu}(dx)$. In this case, γ is called the *L*-derivative of *f* at μ and denoted by $D^L f(\mu)$.

Definition

- (2) *f* is called *L*-differentiable on 𝒫₂(ℝ^d), if the *L*-derivative D^Lf(μ) exists for all μ ∈ 𝒫₂(ℝ^d). Furthermore, if for every μ ∈ 𝒫₂(ℝ^d) there exists a μ-version D^Lf(μ)(·) such that D^Lf(μ)(x) is jointly continuous in (μ, x) ∈ 𝒫₂(ℝ^d) × ℝ^d, we denote f ∈ C^(1,0)(𝒫₂(ℝ^d)).
- (3) g is called differentiable on ℝ^d × 𝒫₂(ℝ^d), if for any (x, μ) ∈ ℝ^d × 𝒫₂(ℝ^d), g(·, μ) is differentiable and g(x, ·) is *L*-differentiable. Furthermore, if ∇g(·, μ)(x) and D^Lg(x, ·)(μ)(y) are jointly continuous in (x, y, μ) ∈ ℝ^d × ℝ^d × 𝒫₂(ℝ^d), we denote g ∈ C^{1,(1,0)}(ℝ^d × 𝒫₂(ℝ^d)).

< ロ > < 同 > < 回 > < 回 >

Well-posedness of DDSDE

DDSDE driven by fractional Brownian motion of the form:

$$dX_t = b(t, X_t, \mathscr{L}_{X_t})dt + \sigma(t, \mathscr{L}_{X_t})dB_t^H, \quad X_0 = x,$$
(9)

where the coefficients $b : [0,T] \times \mathbb{R}^d \times \mathscr{P}_{\theta}(\mathbb{R}^d) \to \mathbb{R}^d, \sigma : [0,T] \times \mathscr{P}_{\theta}(\mathbb{R}^d) \to \mathbb{R}^d \otimes \mathbb{R}^d$ with $\theta \in [1,2]$.

(H1) There exists a non-decreasing function K(t) such that for any $t \in [0, T], x, y \in \mathbb{R}^d, \mu, \nu \in \mathscr{P}_{\theta}(\mathbb{R}^d),$

 $|b(t,x,\mu) - b(t,y,\nu)| \le K(t)(|x-y| + \mathbb{W}_{\theta}(\mu,\nu)), \quad \|\sigma(t,\mu) - \sigma(t,\nu)\| \le K(t)\mathbb{W}_{\theta}(\mu,\nu),$

and

 $|b(t,0,\delta_0)| + ||\sigma(t,\delta_0)|| \le K(t).$

For any $p \ge 1$, let $S^p([0,T])$ be the space of \mathbb{R}^d -valued, continuous $(\mathscr{F}_t)_{t \in [0,T]}$ -adapted processes ψ on [0,T] satisfying

$$\|\psi\|_{\mathcal{S}^p} := \left(\mathbb{E}\sup_{t\in[0,T]} |\psi_t|^p\right)^{1/p} < \infty,$$

Well-posedness of DDSDE

Definition

A stochastic process $X = (X_t)_{0 \le t \le T}$ on \mathbb{R}^d is called a solution of (9), if $X \in S^p([0, T])$ and \mathbb{P} -a.s.,

$$X_t = \xi + \int_0^t b(s, X_s, \mathscr{L}_{X_s}) \mathrm{d}s + \int_0^t \sigma(s, \mathscr{L}_{X_s}) \mathrm{d}B_s^H, \ t \in [0, T].$$

Theorem (Fan-Huang-Suo-Yuan, SPA, 2022)

Suppose that $\xi \in L^p(\Omega \to \mathbb{R}^d, \mathscr{F}_0, \mathbb{P})$ with $p \ge \theta$ and one of the following conditions:

- (I) $H \in (1/2, 1), b, \sigma$ satisfy (H1) and p > 1/H;
- (II) $H \in (0, 1/2)$, b satisfies (H1) and $\sigma(t, \mu)$ does not depend on (t, μ) .

Then equation (9) has a unique solution $X \in S^p([0, T])$.

 L. Galeati, F.A. Harang and A. Mayorcas, Distribution dependent SDEs driven by additive fractional Brownian motion, PTRF, 2022.

 $C_b(\mathscr{E})$ denotes the set of all bounded continuous functions $f : \mathscr{E} \to \mathbb{R}$ with the norm $||f||_{\infty} := \sup_{x \in \mathscr{E}} |f(x)|$, where \mathscr{E} is a Polish space with the Borel σ -field $\mathcal{B}(\mathscr{E})$. Let

 $\mathcal{A} = \left\{ \phi : \phi \text{ is } \mathbb{R}^d \text{-valued } \mathcal{F}_t \text{-predictable process and } \|\phi\|_{\mathcal{H}}^2 < \infty \mathbb{P}\text{-a.s.} \right\},$

and for each M > 0, let

$$S_M = \left\{h \in \mathcal{H} : \frac{1}{2} \|h\|_{\mathcal{H}}^2 \leq M\right\}.$$

It is obvious that S_M endowed with the weak topology is a Polish space. Besides, define

$$\mathcal{A}_M := \{ \phi \in \mathcal{A} : \phi(\omega) \in S_M, \mathbb{P}\text{-a.s.} \}.$$

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

For any fixed $\mu \in C([0, T]; \mathscr{P}_2(\mathbb{R}^d))$, we introduce the following reference equation:

$$d\tilde{X}_t = b(t, \tilde{X}_t, \mu_t)dt + \sigma(t, \mu_t)dB_t^H, \quad 0 \le t \le T$$
(10)

with initial value $\tilde{X}_0 = y \in \mathbb{R}^d$.

Lemma (Lemma 1)

Suppose that **(H1)** holds. Then for any $\mu \in C([0,T]; \mathscr{P}_2(\mathbb{R}^d))$, there is a measurable map $\mathcal{G}_{\mu} : C([0,T]; \mathbb{R}^d) \to C([0,T]; \mathbb{R}^d)$ such that

$$\tilde{X}_{\cdot} = \mathcal{G}_{\mu}(B^{H}_{\cdot}).$$

Moreover, for each $h \in A_M$, define

$$\widetilde{X}^h_{\cdot} := \mathcal{G}_{\mu} \left(\mathcal{B}^H_{\cdot} + (\mathcal{R}_H h)(\cdot)
ight),$$

then \tilde{X}^h satisfies the following equation

$$\tilde{X}_{t}^{h} = \mathbf{y} + \int_{0}^{t} b(s, \tilde{X}_{s}^{h}, \mu_{s}) \mathrm{d}s + \int_{0}^{t} \sigma(s, \mu_{s}) \mathrm{d}(R_{H}h)(s) + \int_{0}^{t} \sigma(s, \mu_{s}) \mathrm{d}B_{s}^{H}, \quad t \in [0, T], \quad \mathbb{P}\text{-}a.s..$$
(11)

14/35

We now consider the following distribution dependent SDE:

$$dX_t = b(t, X_t, \mathscr{L}_{X_t})dt + \sigma(t, \mathscr{L}_{X_t})dB_t^H, \quad X_0 = x \in \mathbb{R}^d, \quad t \in [0, T].$$
(12)

From the above lemma, it easily follows the following result.

Lemma (Lemma 2)

Suppose that y = x and $\mu_t = \mathscr{L}_{X_t}$, $t \in [0, T]$ for equation (10) and **(H1)** holds. Then the solution *X* of equation (12) satisfies $X = \mathcal{G}_{\mathscr{L}_X}(B^H)$, where $\mathcal{G}_{\mathscr{L}_X}$ is given in Lemma 1 with $\mu = \mathscr{L}_X$. Moreover, for any $h \in \mathcal{A}_M$, let

$$X^{h}_{\cdot} = \mathcal{G}_{\mathscr{L}_{X}}\left(B^{H}_{\cdot} + (R_{H}h)(\cdot)\right),$$

then X^h satisfies the following equation

$$\begin{split} X_t^h = & x + \int_0^t b(s, X_s^h, \mathscr{L}_{X_s}) \mathrm{d}s + \int_0^t \sigma(s, \mathscr{L}_{X_s}) \mathrm{d}(R_H h)(s) \\ & + \int_0^t \sigma(s, \mathscr{L}_{X_s}) \mathrm{d}B_s^H, \ t \in [0, T], \ \mathbb{P}\text{-}a.s.. \end{split}$$

In this talk, our main objective is to study asymptotic behaviors for following DDSDEs driven by fractional Brownian motions. For any $\epsilon > 0$,

$$dX_t^{\epsilon} = b(t, X_t^{\epsilon}, \mathscr{L}_{X_t^{\epsilon}})dt + \epsilon^H \sigma(t, \mathscr{L}_{X_t^{\epsilon}})dB_t^H, \ X_0^{\epsilon} = x.$$
(13)

According to Lemma 2, there exists a measurable map $\mathcal{G}^{\epsilon} := \mathcal{G}_{\mathscr{L}_{X^{\epsilon}}}$ such that $X_{\cdot}^{\epsilon} = \mathcal{G}^{\epsilon}(\epsilon^{H}B_{\cdot}^{H})$. Furthermore, for every $h^{\epsilon} \in \mathcal{A}_{M}$, let

$$X_{\cdot}^{\epsilon,h^{\epsilon}} := \mathcal{G}^{\epsilon} \left(\epsilon^{H} B_{\cdot}^{H} + (R_{H} h^{\epsilon})(\cdot) \right), \tag{14}$$

then $X^{\epsilon,h^{\epsilon}}$ satisfies the following equation

$$X_{t}^{\epsilon,h^{\epsilon}} = x + \int_{0}^{t} b(s, X_{s}^{\epsilon,h^{\epsilon}}, \mathscr{L}_{X_{s}^{\epsilon}}) ds + \int_{0}^{t} \sigma(s, \mathscr{L}_{X_{s}^{\epsilon}}) d(R_{H}h^{\epsilon})(s) + \epsilon^{H} \int_{0}^{t} \sigma(s, \mathscr{L}_{X_{s}^{\epsilon}}) dB_{s}^{H}, \quad t \in [0, T], \quad \mathbb{P}\text{-}a.s..$$
(15)

Besides, we need the following result.

Proposition

Suppose that (H1) holds. Then there exists a unique function $\{X_t^0\}_{t \in [0,T]}$ such that

(i)
$$X^0 \in C([0,T]; \mathbb{R}^d)$$

(ii) X^0 satisfies the following deterministic equation

$$X_t^0 = x + \int_0^t b(s, X_s^0, \mathscr{L}_{X_s^0}) \mathrm{d}s, \ t \in [0, T].$$
(16)

Main Results

æ

イロト イヨト イヨト イヨト

Definition of LDP

Definition

(Rate function) A function $I : \mathscr{E} \to [0, \infty)$ is called a rate function if it is lower semicontinuous. Moreover, I is a good rate function if for each constant $M < \infty$, the level set $\{x \in \mathscr{E} : I(x) \le M\}$ is a compact subset of \mathscr{E} .

Definition

(Large deviation principle) Let *I* be a rate function on \mathscr{E} . Given a collection $\{\ell(\epsilon)\}_{\epsilon>0}$ of positive reals, a family $\{\mathbb{X}^{\epsilon}\}_{\epsilon>0}$ of \mathscr{E} -valued random variables is said to be satisfied a LDP on \mathscr{E} with speed $\ell(\epsilon)$ and rate function *I* if the following two conditions hold:

(i) (Upper bound) For each closed subset $F \subset \mathscr{E}$,

$$\limsup_{\epsilon \to 0} \ell(\epsilon) \log \mathbb{P}(\mathbb{X}^{\epsilon} \in F) \le - \inf_{x \in F} I(x).$$

(ii) (Lower bound) For each open subset $G \subset \mathscr{E}$,

 $\liminf_{\epsilon \to 0} \ell(\epsilon) \log \mathbb{P}(\mathbb{X}^{\epsilon} \in G) \ge -\inf_{x \in G} I(x).$

The large deviation principle is equivalent to the following so-called Laplace principle.

Definition

(Laplace principle) Let *I* be a rate function on \mathscr{E} . Given a collection $\{\ell(\epsilon)\}_{\epsilon>0}$ of positive reals, a family $\{\mathbb{X}^{\epsilon}\}_{\epsilon>0}$ of \mathscr{E} -valued random variables is said to be satisfied the Laplace principle upper bound (respectively, lower bound) on \mathscr{E} with speed $\ell(\epsilon)$ and rate function *I* if for all $\varrho \in C_b(\mathscr{E})$,

$$\limsup_{\epsilon \to 0} -\ell(\epsilon) \log \mathbb{E}\left[\exp\left(-\frac{\varrho(\mathbb{X}^{\epsilon})}{\ell(\epsilon)}\right)\right] \le \inf_{x \in \mathscr{E}} \{\varrho(x) + I(x)\},\tag{17}$$

(respectively,

$$\liminf_{\epsilon \to 0} -\ell(\epsilon) \log \mathbb{E}\left[\exp\left(-\frac{\varrho(\mathbb{X}^{\epsilon})}{\ell(\epsilon)}\right)\right] \ge \inf_{x \in \mathscr{E}} \{\varrho(x) + I(x)\}).$$
(18)

The Laplace principle is said to be held for $\{X^{\epsilon}\}$ with speed $\ell(\epsilon)$ and rate function *I* if both the Laplace upper and lower bounds hold.

- A. Budhiraja and P. Dupuis, Analysis and Approximation of Rare Events: Representations and Weak Convergence Methods, Springer, 2019. [Theorems 1.5 and 1.8]
- P. Dupuis and R. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, John Wiley Sons, 2011. [Theorems 1.2.1 and 1.2.3]

イロン イ理 とく ヨン イヨン 二 ヨー

For any $\epsilon > 0$, let $\mathcal{G}^{\epsilon} : C([0, T]; \mathbb{R}^d) \to \mathscr{E}$ be a measurable map (with a slight abuse of notation \mathcal{G}^{ϵ}). Next, we give the following sufficient condition for the Laplace principle (equivalently, the LDP) of $\mathbb{X}^{\epsilon} = \mathcal{G}^{\epsilon}(\epsilon^H B^H)$ as $\epsilon \to 0$.

- (A0) There exists a measurable map $\mathcal{G}^0: I_{0+}^{H+1/2}(L^2([0,T],\mathbb{R}^d)) \to \mathscr{E}$ such that the following two conditions hold.
 - (i) Let $\{h^{\epsilon}: \epsilon > 0\} \subset \mathcal{A}_M$ for any $M \in (0, \infty)$. If h^{ϵ} converges to h in distribution as S_M -valued random elements, then

$$\mathcal{G}^{\epsilon}\left(\epsilon^{H}B^{H}_{\cdot}+\epsilon^{H}/\ell^{\frac{1}{2}}(\epsilon)(R_{H}h^{\epsilon})(\cdot)\right)\to\mathcal{G}^{0}(R_{H}h)$$

in law as $\epsilon \to 0$, where $\{\ell^{\epsilon}\}_{\epsilon>0}$ are positive reals.

(ii) For each $M \in (0, \infty)$, the set $\{\mathcal{G}^0(R_H h) : h \in S_M\}$ is a compact subset of \mathscr{E} .

Proposition

If $\mathbb{X}^{\epsilon}_{\cdot} = \mathcal{G}^{\epsilon}(\epsilon^{H}B^{H}_{\cdot})$ and **(A0)** holds, then the family { $\mathbb{X}^{\epsilon} : \epsilon > 0$ } satisfies the Laplace principle (hence the LDP) on \mathscr{E} with speed $\ell(\epsilon)$ and the rate function I given by

$$I(f) = \inf_{\{h \in \mathcal{H}: f = \mathcal{G}^0(R_H h)\}} \left\{ \frac{1}{2} \|h\|_{\mathcal{H}}^2 \right\}, \ f \in \mathscr{E}.$$
 (19)

Here we follow the convention that the infimum over an empty set is $+\infty$.

Chenggui Yuan

ヘロン スポン メヨン メヨン

Below is a convenient and sufficient condition for verifying (A0)

- (A1) There exists a measurable map $\mathcal{G}^0: I_{0+}^{H+1/2}(L^2([0,T],\mathbb{R}^d)) \to \mathscr{E}$ for which the following two conditions hold.
 - (i) Let $\{h^{\epsilon} : \epsilon > 0\} \subset \mathcal{A}_M$ for any $M \in (0, \infty)$. For each $\delta > 0$,

$$\lim_{\epsilon \to 0} \mathbb{P}\left(d\left(\mathcal{G}^{\epsilon}(\epsilon^{H}B^{H}_{\cdot} + \epsilon^{H}/\ell^{\frac{1}{2}}(\epsilon)(R_{H}h^{\epsilon})(\cdot)), \mathcal{G}^{0}((R_{H}h^{\epsilon})(\cdot))\right) > \delta\right) = 0,$$

where $d(\cdot, \cdot)$ stands for the metric on $\mathscr{E}, \{\ell^{\epsilon}\}_{\epsilon>0}$ are positive reals.

(ii) Let $\{h^n : n \in \mathbb{N}\} \subset S_M$ for any $M \in (0, \infty)$. If h^n converges to some element h in S_M as $n \to \infty$, then $\mathcal{G}^0(R_H h^n)$ converges to $\mathcal{G}^0(R_H h)$ in \mathscr{E} .

Proposition

If $\mathbb{X}^{\epsilon}_{\cdot} = \mathcal{G}^{\epsilon}(\epsilon^{H}B^{H}_{\cdot})$ and **(A1)** holds, then the family { $\mathbb{X}^{\epsilon} : \epsilon > 0$ } satisfies the Laplace principle (hence the LDP) on \mathscr{E} with speed $\ell(\epsilon)$ and the rate function I given by (19).

< 日 > < 同 > < 回 > < 回 > < □ > <

Large deviation principle (LDP)

Introduce the following skeleton equation

$$\Upsilon^h_t = x + \int_0^t b(s, \Upsilon^h_s, \mathscr{L}_{X^0_s}) \mathrm{d}s + \int_0^t \sigma(s, \mathscr{L}_{X^0_s}) \mathrm{d}(R_H h)(s), \ t \in [0, T],$$
(20)

where $h \in \mathcal{H}$ and X^0 is given

$$X_t^0 = x + \int_0^t b(s, X_s^0, \mathscr{L}_{X_s^0}) \mathrm{d}s, \ t \in [0, T].$$

As a consequence, we can define a map as follows

$$\mathcal{G}^{0}: I_{0+}^{H+1/2}(L^{2}([0,T],\mathbb{R}^{d})) \ni \mathbf{R}_{H}h \mapsto \Upsilon^{h} \in C([0,T];\mathbb{R}^{d}).$$
(21)

Our main result in this part reads as follows.

Theorem (LDP)

Assume that **(H1)** holds. For each $\epsilon > 0$, let $X^{\epsilon} = \{X_t^{\epsilon}\}_{t \in [0,T]}$ be the solution to equation (13). Then the family $\{X^{\epsilon} : \epsilon > 0\}$ satisfies a LDP on $C([0,T]; \mathbb{R}^d)$ with speed ϵ^{2H} and the rate function *I* given by (19), where \mathcal{G}^0 is defined in (21).

Moderate deviation principle (MDP)

In this part, we shall investigate the MDP for the equation (13) as $\epsilon \rightarrow 0$. The moderate deviations problem for $\{X^{\epsilon} : \epsilon > 0\}$ is to study the asymptotics of

$$\frac{1}{\kappa^2(\epsilon)}\log \mathbb{P}(Y^{\epsilon}\in \cdot),$$

where $\kappa(\epsilon) \to \infty, \epsilon^H \kappa(\epsilon) \to 0$ as $\epsilon \to 0$ and

$$Y^{\epsilon} := \frac{X^{\epsilon} - X^{0}}{\epsilon^{H} \kappa(\epsilon)}.$$
(22)

Recall the equations (13) and (16), from which we deduce that Y^{ϵ} satisfies

$$Y_{t}^{\epsilon} = \frac{1}{\epsilon^{H}\kappa(\epsilon)} \int_{0}^{t} (b(t, X_{s}^{0} + \epsilon^{H}\kappa(\epsilon)Y_{s}^{\epsilon}, \mathscr{L}_{X_{s}^{\epsilon}}) - b(s, X_{s}^{0}, \mathscr{L}_{X_{s}^{0}})) ds + \frac{1}{\kappa(\epsilon)} \int_{0}^{t} \sigma(s, \mathscr{L}_{X_{s}^{\epsilon}}) dB_{s}^{H}, \quad t \in [0, T].$$

$$(23)$$

イロト イポト イヨト イヨト

Next, we put

$$\widetilde{\mathcal{G}}^{\epsilon}(\cdot) := rac{\mathcal{G}^{\epsilon}(\cdot) - X^{0}}{\epsilon^{H}\kappa(\epsilon)},$$

which is a map from $C([0,T]; \mathbb{R}^d)$ to $C([0,T]; \mathbb{R}^d)$ such that $Y^{\epsilon} = \widetilde{\mathcal{G}}^{\epsilon}(\epsilon^H B^H_{\cdot})$ due to the definition of \mathcal{G}^{ϵ} and the relation $X^{\epsilon}_{\cdot} = \mathcal{G}^{\epsilon}(\epsilon^H B^H_{\cdot})$. Moreover, for any $h^{\epsilon} \in \mathcal{A}_M$, let

$$Y^{\epsilon,h^{\epsilon}}_{\cdot} = \widetilde{\mathcal{G}}^{\epsilon} \left(\epsilon^{H} B^{H}_{\cdot} + \epsilon^{H} \kappa(\epsilon) (R_{H} h^{\epsilon}) (\cdot) \right),$$
(24)

then $Y^{\epsilon,h^{\epsilon}}$ solves the following equation

$$Y_{t}^{\epsilon,h^{\epsilon}} = \frac{1}{\epsilon^{H}\kappa(\epsilon)} \int_{0}^{t} \left(b(s, X_{s}^{0} + \epsilon^{H}\kappa(\epsilon)Y_{s}^{\epsilon,h^{\epsilon}}, \mathscr{L}_{X_{s}^{\epsilon}}) - b(s, X_{s}^{0}, \mathscr{L}_{X_{s}^{0}}) \right) ds + \int_{0}^{t} \sigma(s, \mathscr{L}_{X_{s}^{\epsilon}}) d(R_{H}h^{\epsilon})(s) + \frac{1}{\kappa(\epsilon)} \int_{0}^{t} \sigma(s, \mathscr{L}_{X_{s}^{\epsilon}}) dB_{s}^{H}, \quad t \in [0, T], \quad \mathbb{P}\text{-}a.s..$$
(25)

イロト イポト イヨト イヨト

In additional to (H1), we also need the following assumption.

(H2) The derivative $\nabla b(t, \cdot, \mu)(x)$ exists and there is a non-decreasing function $\widetilde{K}(t)$ such that for any $t \in [0, T], x, y \in \mathbb{R}^d, \mu \in \mathcal{P}_{\theta}(\mathbb{R}^d)$,

$$\|\nabla b(t,\cdot,\mu)(x) - \nabla b(t,\cdot,\mu)(y)\| \le \widetilde{K}(t)(|x-y|).$$

Now, for each $h \in \mathcal{H}$, we introduce the following equation

$$\Xi_t^h = \int_0^t \nabla_{\Xi_s^h} b(s, \cdot, \mathscr{L}_{X_s^0})(X_s^0) \mathrm{d}s + \int_0^t \sigma(s, \mathscr{L}_{X_s^0}) \mathrm{d}(R_H h)(s), \ t \in [0, T],$$
(26)

which is used to give the rate function of Theorem 2.4 below. Under the time Hölder continuity of σ with order belonging to (1 - H, 1], the equation (26) admits a unique solution. Therefore, this allows us to define a map as follows

$$\widetilde{\mathcal{G}}^{0}: I_{0+}^{H+1/2}(L^{2}([0,T],\mathbb{R}^{d})) \ni R_{H}h \mapsto \Xi^{h} \in C([0,T];\mathbb{R}^{d}).$$
(27)

Theorem (MDP)

Assume that (H1) and (H2) hold. For each $\epsilon > 0$, let $Y^{\epsilon} = \{Y^{\epsilon}_t\}_{t \in [0,T]}$ be defined in (22). Then the family $\{Y^{\epsilon} : \epsilon > 0\}$ satisfies a LDP on $C([0,T]; \mathbb{R}^d)$ with speed $\kappa^{-2}(\epsilon)$ and the rate function I given by

$$I(f) = \inf_{\{h \in \mathcal{H}: f = \tilde{\mathcal{G}}^0(R_H h)\}} \left\{ \frac{1}{2} \|h\|_{\mathcal{H}}^2 \right\}, \ f \in C([0, T]; \mathbb{R}^d),$$
(28)

where $\widetilde{\mathcal{G}}^0$ is defined in (27).

Chenggui Yuan

This part is devoted to studying the CLT for equation (13). More precisely, we shall show that $\frac{\chi^{\epsilon} - \chi^{0}}{\epsilon^{H}}$ converges to a stochastic process in the *p*th-moment sense as $\epsilon \to 0$. The limit process is a solution to some linear equation which involves the Lions derivative of the coefficient *b*. we will impose the following conditions on *b* and σ .

(H3) For every $t \in [0, T]$, $b(t, \cdot, \cdot) \in C^{1,(1,0)}(\mathbb{R}^d \times \mathscr{P}_2(\mathbb{R}^d))$, and there exists a non-decreasing function $\overline{K}(t)$ such that

(i) for any
$$t \in [0, T]$$
, $x, y \in \mathbb{R}^d$, $\mu, \nu \in \mathscr{P}_2(\mathbb{R}^d)$,

 $\|\nabla b(t,\cdot,\mu)(x)\| + |D^L b(t,x,\cdot)(\mu)(y)| \le \bar{K}(t), \quad \|\sigma(t,\mu) - \sigma(t,\nu)\| \le \bar{K}(t) \mathbb{W}_{\theta}(\mu,\nu),$

and $|b(t,0,\delta_0)| + ||\sigma(t,\delta_0)|| \le \overline{K}(t)$. (ii) for any $t \in [0,T]$, $x, y, z_1, z_2 \in \mathbb{R}^d$, $\mu, \nu \in \mathscr{P}_2(\mathbb{R}^d)$,

$$\begin{aligned} \|\nabla b(t,\cdot,\mu)(x) - \nabla b(t,\cdot,\nu)(y)\| + |D^L b(t,x,\cdot)(\mu)(z_1) - D^L b(t,y,\cdot)(\nu)(z_2)| \\ &\leq \bar{K}(t)(|x-y| + |z_1 - z_2| + \mathbb{W}_{\theta}(\mu,\nu)). \end{aligned}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Our main result in this part is stated in the following theorem.

Theorem

Assume that **(H3)** holds, then for any $p \ge \theta$ and p > 1/H,

$$\mathbb{E}\left(\sup_{0\leq t\leq T}\left|\frac{X_t^{\epsilon}-X_l^0}{\epsilon^H}-Z_t\right|^p\right)\leq C_{T,p,H}\epsilon^{pH}\left(1+\sup_{t\in[0,T]}|X_t^0|^{2p}\right), \ \epsilon\in(0,\epsilon_0],$$

where Zt satisfies

$$Z_{t} = \int_{0}^{t} \nabla_{Z_{s}} b(s, \cdot, \mathscr{L}_{X_{s}^{0}})(X_{s}^{0}) \mathrm{d}s + \int_{0}^{t} \left(\mathbb{E} \langle D^{L} b(s, u, \cdot)(\mathscr{L}_{X_{s}^{0}})(X_{s}^{0}), Z_{s} \rangle \right) |_{u = X_{s}^{0}} \mathrm{d}s$$
$$+ \int_{0}^{t} \sigma(s, \mathscr{L}_{X_{s}^{0}}) \mathrm{d}B_{s}^{H}, \quad t \in [0, T],$$
(29)

and $\epsilon_0 > 0$ is a constant which will appear in the proof.

3

Proof of LDP

it is enough to check that (A1) holds with $\mathcal{G}^{\epsilon}, \mathcal{G}^{0}$ and $\ell(\epsilon)$ given by (14), (21) and ϵ^{2H} .

Lemma

Suppose that σ satisfies **(H1)** and $\mu \in C([0,T]; \mathscr{P}_p(\mathbb{R}^d))$ with $p \ge \theta$ and p > 1/H. Then there is a constant $C_{T,p,H} > 0$ such that

$$\mathbb{E}\left(\sup_{t\in[0,T]}\left|\int_{0}^{t}\sigma(s,\mu_{s})\mathrm{d}B_{s}^{H}\right|^{p}\right)\leq C_{T,p,H}\int_{0}^{T}\|\sigma(s,\mu_{s})\|^{p}\mathrm{d}s.$$
(30)

The following lemma characterizes the difference between X^{ϵ} and X^{0} .

Lemma

Suppose that (H1) holds. Then for any $p \ge \theta$ and p > 1/H, there exists a constant $\epsilon_0 > 0$ such that for every $\epsilon \in (0, \epsilon_0]$,

$$\mathbb{E}\bigg(\sup_{t\in[0,T]}\left|X_t^{\epsilon}-X_t^{0}\right|^p\bigg)\leq C_{T,p,H}\epsilon^{pH}\bigg(1+\sup_{t\in[0,T]}|X_t^{0}|^p\bigg).$$

$$\mathrm{d}X_t^\epsilon = b(t, X_t^\epsilon, \mathscr{L}_{X_t^\epsilon})\mathrm{d}t + \epsilon^H \sigma(t, \mathscr{L}_{X_t^\epsilon})\mathrm{d}B_t^H, \ X_0^\epsilon = x. \ X_t^0 = x + \int_0^t b(s, X_s^0, \mathscr{L}_{X_s^0})\mathrm{d}s_{\overline{z}} \ t_s \in [0, \underline{z}]. \quad \exists \quad \mathfrak{I}_s \in [0, \underline{z}].$$

Chenggui Yuan

28/35

Proposition (To verify (A1) (i))

Suppose that (H1) holds and let $\{h^{\epsilon} : \epsilon > 0\} \subset \mathcal{A}_{M}$ for any $M \in (0, \infty)$. Then, for any $\delta > 0$,

$$\lim_{\epsilon \to 0} \mathbb{P}\left(\|X_{\cdot}^{\epsilon,h^{\epsilon}} - \mathcal{G}^{0}((R_{H}h^{\epsilon})(\cdot))\|_{\infty} > \delta \right) = 0,$$

where $\|\cdot\|_{\infty}$ is the uniform norm on $C([0,T]; \mathbb{R}^d)$.

Proof. For each fixed $\epsilon > 0$, we have

$$\begin{aligned} X_t^{\epsilon,h^{\epsilon}} &- \mathcal{G}^0((R_H h^{\epsilon})(\cdot))(t) = X_t^{\epsilon,h^{\epsilon}} - \Upsilon_t^{h^{\epsilon}} \\ &= \int_0^t \left(b(s, X_s^{\epsilon,h^{\epsilon}}, \mathscr{L}_{X_s^{\epsilon}}) - b(s, \Upsilon_s^{h^{\epsilon}}, \mathscr{L}_{X_s^{0}}) \right) \mathrm{d}s \\ &+ \int_0^t \left(\sigma(s, \mathscr{L}_{X_s^{\epsilon}}) - \sigma(s, \mathscr{L}_{X_s^{0}}) \right) \mathrm{d}(R_H h^{\epsilon})(s) + \epsilon^H \int_0^t \sigma(s, \mathscr{L}_{X_s^{\epsilon}}) \mathrm{d}B_s^H, \ t \in [0, T]. \end{aligned}$$

Then, it follows that

$$|X_{t}^{\epsilon,h^{\epsilon}} - \Upsilon_{t}^{h^{\epsilon}}|^{2} \leq 3 \left| \int_{0}^{t} \left(b(s, X_{s}^{\epsilon,h^{\epsilon}}, \mathscr{L}_{X_{s}^{\epsilon}}) - b(s, \Upsilon_{s}^{h^{\epsilon}}, \mathscr{L}_{X_{s}^{0}}) \right) ds \right|^{2} + 3 \left| \int_{0}^{t} \left(\sigma(s, \mathscr{L}_{X_{s}^{\epsilon}}) - \sigma(s, \mathscr{L}_{X_{s}^{0}}) \right) d(R_{H}h^{\epsilon})(s) \right|^{2} + 3\epsilon^{2H} \left| \int_{0}^{t} \sigma(s, \mathscr{L}_{X_{s}^{\epsilon}}) dB_{s}^{H} \right|^{2} =: J_{1}(t) + J_{2}(t) + J_{3}(t).$$

$$(31)_{s \in \mathbb{Z}}$$

Chenggui Yuan

29/35

Lemma

Suppose that (H1) holds. Then for any M > 0,

$$\sup_{h\in S_M}\sup_{t\in[0,T]}|\Upsilon^h_t|^2\leq C_{T,H,M},$$

where $C_{T,H,M}$ is a positive constant only depending on T, H, M.

Proof.

$$\begin{aligned} |\Upsilon_t^h|^2 &= |x|^2 + 2\int_0^t \langle \Upsilon_s^h, b(s, \Upsilon_s^h, \mathscr{L}_{\chi_s^0}) \rangle \mathrm{d}s + 2\int_0^t \langle \Upsilon_s^h, \sigma(s, \mathscr{L}_{\chi_s^0}) \mathrm{d}(R_H h)(s) \rangle \\ &=: |x|^2 + I_1(t) + I_2(t). \end{aligned}$$
(32)

2

<ロ> <問> <問> < 回> < 回> 、

Proposition (To verify (A1)(ii))

Suppose that **(H1)** holds and let $\{h^n : n \in \mathbb{N}\} \subset S_M$ for any $M \in (0, \infty)$ such that h^n converges to element h in S_M as $n \to \infty$. Then

 $\lim_{n\to\infty}\sup_{t\in[0,T]}|\mathcal{G}^0(R_Hh^n)(t)-\mathcal{G}^0(R_Hh)(t)|=0.$

Proof. For each $n \ge 1$, let Υ^{h^n} be the solution of equation (20) with *h* replaced by h^n . By (21), there hold $\mathcal{G}^0(R_H h^n) = \Upsilon^{h^n}$ and $\mathcal{G}^0(R_H h) = \Upsilon^h$. 1. We first prove that $\{\Upsilon^{h^n}\}_{n\ge 1}$ is relatively compact in $C([0, T]; \mathbb{R}^d)$. With the help of the Arzelà-Ascoli theorem, it is enough to show that $\{\Upsilon^{h^n}\}_{n\ge 1}$ is uniformly bounded and equi-continuous in $C([0, T]; \mathbb{R}^d)$.

a) By previous Lemma, there exists a constant $C_{T,H,M} > 0$ such that

$$\sup_{n\geq 1} \sup_{t\in[0,T]} |\Upsilon_t^{h^n}| \le C_{T,H,M},\tag{33}$$

which means that $\{\Upsilon^{h^n}\}_{n\geq 1}$ is uniformly bounded in $C([0,T]; \mathbb{R}^d)$. b) Equi-continuous of $\{\Upsilon^{h^n}\}_{n\geq 1}$ in $C([0,T]; \mathbb{R}^d)$. By (20), we deduce that for $0 \leq s < t \leq T$,

$$\Upsilon_t^{h^n} - \Upsilon_s^{h^n} = \int_s^t b(r, \Upsilon_r^{h^n}, \mathscr{L}_{X_r^0}) \mathrm{d}r + \int_s^t \sigma(r, \mathscr{L}_{X_r^0}) \mathrm{d}(R_H h^n)(r).$$
(34)

2. Since $\{\Upsilon^{h^n}\}_{n\geq 1}$ is relatively compact in $C([0,T]; \mathbb{R}^d)$, any subsequence of $\{\Upsilon^{h^n}\}_{n\geq 1}$, we can extract a further subsequence (not relabelled) such that Υ^{h^n} converges to some $\tilde{\Upsilon}$ in $C([0,T]; \mathbb{R}^d)$.

3. To show that $\bar{\Upsilon} = \Upsilon^h$. Then we can conclude that the full sequence Υ^{h^n} converges to Υ^h in $C([0, T]; \mathbb{R}^d)$, which is the desired assertion.

D. Adams, G. Dos Reis, R. Ravaille, W. Salkeld and J. Tugaut, Large deviations and exit-times for reflected McKean-Vlasov equations with self-stabilizing terms and superlinear drifts, *Stochastic Process. Appl.* **146** (2022), 264–310.

F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer-Verlag, London, 2008.

M. Bossy and D. Talay, A stochastic particle method for the McKean-Vlasov and the Burgers equation, *Math. Comput.* 66 (1997), 157–192.

- A. Budhiraja and P. Dupuis, A variational representation for positive functionals of infinite dimensional Brownian motion, Probab. Math. Statist.-Wroclaw University 20 (2000), 39–61.
- A. Budhiraja and P. Dupuis, Analysis and Approximation of Rare Events: Representations and Weak Convergence Methods, Springer, 2019.

- P. Cardaliaguet, Notes on mean field games, P.-L. Lions lectures at Collège de France, https://www.ceremade.dauphine.fr/cardaliaguet/MFG20130420.pdf, 2013.
- R. Carmona and F. Delarue, Probabilistic analysis of mean-field games, SIAM J. Control Optim. 51 (2013), 2705–2734.
- D. Crisan and E. McMurray, Smoothing properties of McKean-Vlasov SDEs, *Probab. Theory Related Fields* **171** (2018), 97–148.

F. Gao and J. Mu, Moderate deviations for linear eigenvalue statistics of β -ensembles, *Random Matrices Theory Appl.* **11** (2022), Paper No. 2250017, 29 pp.

э.

イロト イヨト イヨト イヨト

Z. Dong, J. Wu, R. Zhang and T. Zhang, Large deviation principles for first-order scalar conservation laws with stochastic forcing, *Ann. Appl. Probab.* **30** (2020), 324–367.

- X. Fan, X. Huang, Y. Suo and C. Yuan, Distribution dependent SDEs driven by fractional Brownian motions, *Stochastic Process. Appl.* **151** (2022), 23–67.
- W. Hong, S. Li and W. Liu, Large deviation principle for McKean-Vlasov quasilinear stochastic evolution equations, *Appl. Math. Optim.* 84 (2021), 1119–1147.

- X. Huang and F.-Y. Wang, Distribution dependent SDEs with singular coefficients, *Stochastic Process. Appl.* **129** (2019), 4747–4770.
- W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext, Springer, 2015.

- H. P. McKean, A class of Markov processes associated with nonlinear parabolic equations, *Proc. Natl. Acad. Sci. USA* 56 (1966), 1907–1911.
- P. Ren and F.-Y. Wang, Bismut formula for Lions derivative of distribution dependent SDEs and applications, *J. Differential Equations* **267** (2019), 4745–4777.

- Y. Song, Gradient estimates and exponential ergodicity for Mean-Field SDEs with jumps, *J. Theoret. Probab.* **33** (2020), 201–238.
- F.-Y. Wang, Distribution dependent SDEs for Landau type equations, Stochastic Process. Appl. 128 (2018), 595–621.

R. Wang, J. Zhai and T. Zhang, A moderate deviation principle for 2-D stochastic Navier-Stokes equations, *J. Differential Equations* **258** (2015), 3363–3390.

T. Zhang, On the small time asymptotics of diffusion processes on Hilbert spaces, Ann. Probab. 28 (2000), 537–557.

Thank you very much for your kind attention!

æ

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <