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The problem, and related works

Distribution dependent stochastic differential equations (SDEs), also called McKean-Vlasov or
mean-field SDEs, is of the form:

dXt = b(t,Xt,LXt )dt + σ(t,Xt,LXt )dWt, X0 = ξ ∈ Lp(Ω→ Rd,F0,P).

X. Fan, T. Yu and C. Yuan, Asymptotic behaviors for distribution dependent SDEs driven
by fractional Brownian motions, accepted by SPA.
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Our concerned equation:

dXt = b(t,Xt,LXt )dt + σ(t,LXt )dBH
t , X0 = x, (1)

where LXεt denotes the law of Xεt , ε > 0 is a small parameter, BH is a fractional Brownian motion
with Hurst parameter H ∈ (1/2, 1), the coefficients b and σ fulfill some appropriate conditions
given in later sections. Moreover, the integral with respect to BH is interpreted in the Wiener
sense due to the fact that σ(·,LXε· ) is deterministic.
The main purpose of this paper is to study the LDP, MDP and CLT of (1) when ε→ 0. More
precisely, let X0 be the limit of Xε in some sense, we are going to investigate the asymptotic
behaviors for the path of the form

Yεt :=
Xεt − X0

t

εHκ(ε)
, t ∈ [0, T].

• In the case of the LDP, namely κ(ε) = 1/εH , we show that Xε satisfies the LDP with speed ε2H .
• In the case of the CLT, namely κ(ε) = 1, we prove that as ε→ 0, Xε−X0

εH converges to a
stochastic process which solves a linear equation involving the Lions derivative of the coefficient
b.
• In the case of the MDP, namely κ(ε)→∞ and εHκ(ε)→ 0 as ε→ 0, we derive that Yε

satisfies LDP with speed κ−2(ε).
Here, let us point out that the MDP for Xε refers to the LDP for Yε since the scaling by εHκ(ε)
means that the MDP is in the regime between the LDP and the CLT.
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For some fixed H ∈ (1/2, 1). we consider (Ω,F ,P) the canonical probability space associated
with fractional Brownian motion with Hurst parameter H such that the canonical process
{BH

t ; t ∈ [0, T]} is a d-dimensional fractional Brownian motion with Hurst parameter H. Recall
that BH = (BH,1, · · · ,BH,d) is a centered Gaussian process, whose covariance structure is
defined by

E
(

BH,i
t BH,j

s

)
= RH(t, s)δi,j, s, t ∈ [0, T], i, j = 1, · · · , d

with RH(t, s) = 1
2 (t2H + s2H − |t − s|2H).

We denote by E the set of step functions on [0, T] with values in Rd. Let H be the Hilbert space
defined as the completion of E with respect to the scalar product

〈
(I[0,t1], · · ·, I[0,td ]), (I[0,s1], · · ·, I[0,sd ])

〉
H =

d∑
i=1

RH(ti, si).

RH(t, s) =

∫ t∧s

0
KH(t, r)KH(s, r)dr,

where KH(t, s) is the square integrable kernel given by

KH(t, s) = CHs
1
2−H

∫ t

s
(r − s)H− 3

2 rH− 1
2 dr, t > s

with CH =
√

H(2H−1)
B(2−2H,H−1/2) and B standing for the Beta function.
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Let (e1, · · · , ed) designate the canonical basis of Rd, one can introduce the linear operator
K∗H : E → L2([0, T],Rd) defined by

K∗H(I[0,t]ei) = KH(t, ·)ei.

〈K∗Hψ,K∗Hφ〉L2([0,T],Rd) = 〈ψ, φ〉H holds for all ψ, φ ∈ E . There exists a d-dimensional Wiener
process W defined on (Ω,F ,P) such that BH has the following Volterra-type representation

BH
t =

∫ t

0
KH(t, s)dWs, t ∈ [0, T]. (2)

Moreover, K∗H has the following representations: for any ψ, φ ∈ H,

(K∗Hψ)(t) =

∫ T

t
ψ(s)

∂KH(s, t)
∂s

ds

and

〈K∗Hψ,K∗Hφ〉L2([0,T],Rd) = 〈ψ, φ〉H = H(2H − 1)

∫ T

0

∫ T

0
|t − s|2H−2〈ψ(s), φ(t)〉Rd dsdt. (3)

As a consequence, for any ψ ∈ L2([0, T],Rd), one has

‖ψ‖2
H ≤ 2HT2H−1‖ψ‖2

L2 . (4)

Besides, one can show that L1/H([0, T],Rd) ⊂ H.
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Next, we define the operator KH : L2([0, T],Rd)→ IH+1/2
0+ (L2([0, T],Rd)) by

(KH f )(t) =

∫ t

0
KH(t, s)f (s)ds,

where Iα0+ is the left-sided fractional Riemann-Liouville integral operator of order α(> 0) given by

Iα0+f (x) =
1

Γ(α)

∫ x

0

f (y)

(x− y)1−α dy, f ∈ L1([0, T],Rd), x ∈ (0, T). (5)

Let us mention that the space IH+1/2
0+ (L2([0, T],Rd)) is the fractional version of the

Cameron-Martin space. Finally, we denote by RH = KH ◦ K∗H : H → IH+1/2
0+ (L2([0, T],Rd)) the

operator

(RHψ)(t) =

∫ t

0
KH(t, s)(K∗Hψ)(s)ds. (6)

Since IH+1/2
0+ (L2([0, T],Rd)) ⊂ CH([0, T],Rd), we know that for any ψ ∈ H, RHψ is Hölder

continuous of order H, i.e.

RHψ ∈ CH([0, T],Rd), ψ ∈ H. (7)

(RHψ)(t) =

∫ t

0

(∫ s

0

∂KH

∂s
(s, r)(K∗Hψ)(r)dr

)
ds. (8)
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The Lions derivative
For any θ ∈ [1,∞), Pθ(Rd) stands for the set of θ-integrable probability measures on Rd , and define the Lθ -Wasserstein
distance on Pθ(Rd) as follows

Wθ(µ, ν) := inf
π∈C(µ,ν)

(∫
Rd×Rd

|x− y|θπ(dx, dy)

) 1
θ
, µ, ν ∈Pθ(Rd

).

Here C(µ, ν) denotes the set of all probability measures on Rd × Rd with marginals µ and ν.

Definition
Let f : P2(Rd)→ R and g : Rd ×P2(Rd)→ R.

(1) f is called L-differentiable at µ ∈P2(Rd), if the functional

L2
(Rd → Rd

, µ) 3 φ 7→ f (µ ◦ (Id + φ)
−1

))

is Fréchet differentiable at 0 ∈ L2(Rd → Rd, µ). That is, there exists a unique γ ∈ L2(Rd → Rd, µ) such that

lim
‖φ‖

L2
µ
→0

f (µ ◦ (Id + φ)−1)− f (µ)− 〈γ, φ〉µ
‖φ‖L2

µ

= 0,

where 〈γ, φ〉µ =
∫
Rd 〈γ(x), φ(x)〉µ(dx). In this case, γ is called the L-derivative of f at µ and denoted by DL f (µ).
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Definition
(2) f is called L-differentiable on P2(Rd), if the L-derivative DLf (µ) exists for all µ ∈P2(Rd).

Furthermore, if for every µ ∈P2(Rd) there exists a µ-version DLf (µ)(·) such that
DLf (µ)(x) is jointly continuous in (µ, x) ∈P2(Rd)× Rd, we denote f ∈ C(1,0)(P2(Rd)).

(3) g is called differentiable on Rd ×P2(Rd), if for any (x, µ) ∈ Rd ×P2(Rd), g(·, µ) is
differentiable and g(x, ·) is L-differentiable. Furthermore, if ∇g(·, µ)(x) and DLg(x, ·)(µ)(y)
are jointly continuous in (x, y, µ) ∈ Rd × Rd ×P2(Rd), we denote
g ∈ C1,(1,0)(Rd ×P2(Rd)).
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Well-posedness of DDSDE
DDSDE driven by fractional Brownian motion of the form:

dXt = b(t,Xt,LXt )dt + σ(t,LXt )dBH
t , X0 = x, (9)

where the coefficients b : [0, T]× Rd ×Pθ(Rd)→ Rd, σ : [0, T]×Pθ(Rd)→ Rd ⊗ Rd with
θ ∈ [1, 2].

(H1) There exists a non-decreasing function K(t) such that for any
t ∈ [0, T], x, y ∈ Rd, µ, ν ∈Pθ(Rd),

|b(t, x, µ)− b(t, y, ν)| ≤ K(t)(|x− y|+ Wθ(µ, ν)), ‖σ(t, µ)− σ(t, ν)‖ ≤ K(t)Wθ(µ, ν),

and

|b(t, 0, δ0)|+ ‖σ(t, δ0)‖ ≤ K(t).

For any p ≥ 1, let Sp([0, T]) be the space of Rd-valued, continuous (Ft)t∈[0,T]-adapted
processes ψ on [0, T] satisfying

‖ψ‖Sp :=

(
E sup

t∈[0,T]
|ψt|p

)1/p

<∞,
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Well-posedness of DDSDE

Definition
A stochastic process X = (Xt)0≤t≤T on Rd is called a solution of (9), if X ∈ Sp([0, T]) and P-a.s.,

Xt = ξ +

∫ t

0
b(s,Xs,LXs )ds +

∫ t

0
σ(s,LXs )dBH

s , t ∈ [0, T].

Theorem (Fan-Huang-Suo-Yuan, SPA, 2022)
Suppose that ξ ∈ Lp(Ω→ Rd,F0,P) with p ≥ θ and one of the following conditions:

(I) H ∈ (1/2, 1), b, σ satisfy (H1) and p > 1/H;

(II) H ∈ (0, 1/2), b satisfies (H1) and σ(t, µ) does not depend on (t, µ).

Then equation (9) has a unique solution X ∈ Sp([0, T]).

L. Galeati, F.A. Harang and A. Mayorcas, Distribution dependent SDEs driven by additive
fractional Brownian motion, PTRF, 2022.
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Reference equation

Cb(E ) denotes the set of all bounded continuous functions f : E → R with the norm
‖f‖∞ := supx∈E |f (x)|, where E is a Polish space with the Borel σ-field B(E ). Let

A =
{
φ : φ is Rd-valued Ft-predictable process and ‖φ‖2

H <∞ P-a.s.
}
,

and for each M > 0, let

SM =

{
h ∈ H :

1
2
‖h‖2
H ≤ M

}
.

It is obvious that SM endowed with the weak topology is a Polish space. Besides, define

AM := {φ ∈ A : φ(ω) ∈ SM , P-a.s.}.
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For any fixed µ. ∈ C([0, T]; P2(Rd)), we introduce the following reference equation:

dX̃t = b(t, X̃t, µt)dt + σ(t, µt)dBH
t , 0 ≤ t ≤ T (10)

with initial value X̃0 = y ∈ Rd.

Lemma (Lemma 1)
Suppose that (H1) holds. Then for any µ· ∈ C([0, T]; P2(Rd)), there is a measurable map
Gµ : C([0, T];Rd)→ C([0, T];Rd) such that

X̃· = Gµ(BH
· ).

Moreover, for each h ∈ AM , define

X̃h
· := Gµ

(
BH
· + (RHh)(·)

)
,

then X̃h satisfies the following equation

X̃h
t =y +

∫ t

0
b(s, X̃h

s , µs)ds +

∫ t

0
σ(s, µs)d(RHh)(s)

+

∫ t

0
σ(s, µs)dBH

s , t ∈ [0, T], P-a.s.. (11)
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We now consider the following distribution dependent SDE:

dXt = b(t,Xt,LXt )dt + σ(t,LXt )dBH
t , X0 = x ∈ Rd, t ∈ [0, T]. (12)

From the above lemma, it easily follows the following result.

Lemma (Lemma 2)
Suppose that y = x and µt = LXt , t ∈ [0, T] for equation (10) and (H1) holds. Then the solution
X of equation (12) satisfies X· = GLX (BH

· ), where GLX is given in Lemma 1 with µ = LX .
Moreover, for any h ∈ AM , let

Xh
· = GLX

(
BH
· + (RHh)(·)

)
,

then Xh satisfies the following equation

Xh
t =x +

∫ t

0
b(s,Xh

s ,LXs )ds +

∫ t

0
σ(s,LXs )d(RHh)(s)

+

∫ t

0
σ(s,LXs )dBH

s , t ∈ [0, T], P-a.s..
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In this talk, our main objective is to study asymptotic behaviors for following DDSDEs driven by
fractional Brownian motions. For any ε > 0,

dXεt = b(t,Xεt ,LXεt )dt + εHσ(t,LXεt )dBH
t , Xε0 = x. (13)

According to Lemma 2, there exists a measurable map Gε := GLXε
such that Xε· = Gε(εHBH

· ).
Furthermore, for every hε ∈ AM , let

Xε,h
ε

· := Gε
(
εHBH
· + (RHhε)(·)

)
, (14)

then Xε,h
ε

satisfies the following equation

Xε,h
ε

t =x +

∫ t

0
b(s,Xε,h

ε

s ,LXεs )ds +

∫ t

0
σ(s,LXεs )d(RHhε)(s)

+ εH
∫ t

0
σ(s,LXεs )dBH

s , t ∈ [0, T], P-a.s.. (15)

Besides, we need the following result.

Proposition
Suppose that (H1) holds. Then there exists a unique function {X0

t }t∈[0,T] such that

(i) X0 ∈ C([0, T];Rd),

(ii) X0 satisfies the following deterministic equation

X0
t = x +

∫ t

0
b(s,X0

s ,LX0
s
)ds, t ∈ [0, T]. (16)
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Main Results
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Definition of LDP

Definition
(Rate function) A function I : E → [0,∞) is called a rate function if it is lower semicontinuous.
Moreover, I is a good rate function if for each constant M <∞, the level set {x ∈ E : I(x) ≤ M}
is a compact subset of E .

Definition
(Large deviation principle) Let I be a rate function on E . Given a collection {`(ε)}ε>0 of positive
reals, a family {Xε}ε>0 of E -valued random variables is said to be satisfied a LDP on E with
speed `(ε) and rate function I if the following two conditions hold:

(i) (Upper bound) For each closed subset F ⊂ E ,

lim sup
ε→0

`(ε) log P(Xε ∈ F) ≤ − inf
x∈F

I(x).

(ii) (Lower bound) For each open subset G ⊂ E ,

lim inf
ε→0

`(ε) log P(Xε ∈ G) ≥ − inf
x∈G

I(x).
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The large deviation principle is equivalent to the following so-called Laplace principle.

Definition
(Laplace principle) Let I be a rate function on E . Given a collection {`(ε)}ε>0 of positive reals, a
family {Xε}ε>0 of E -valued random variables is said to be satisfied the Laplace principle upper
bound (respectively, lower bound) on E with speed `(ε) and rate function I if for all % ∈ Cb(E ),

lim sup
ε→0

−`(ε) logE
[
exp

(
−
%(Xε)
`(ε)

)]
≤ inf

x∈E
{%(x) + I(x)}, (17)

(respectively,

lim inf
ε→0

−`(ε) logE
[
exp

(
−
%(Xε)
`(ε)

)]
≥ inf

x∈E
{%(x) + I(x)}). (18)

The Laplace principle is said to be held for {Xε} with speed `(ε) and rate function I if both the
Laplace upper and lower bounds hold.

A. Budhiraja and P. Dupuis, Analysis and Approximation of Rare Events: Representations
and Weak Convergence Methods, Springer, 2019. [Theorems 1.5 and 1.8]

P. Dupuis and R. Ellis, A Weak Convergence Approach to the Theory of Large Deviations,
John Wiley Sons, 2011. [Theorems 1.2.1 and 1.2.3]
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For any ε > 0, let Gε : C([0, T];Rd)→ E be a measurable map (with a slight abuse of notation
Gε). Next, we give the following sufficient condition for the Laplace principle (equivalently, the
LDP) of Xε = Gε(εHBH

· ) as ε→ 0.

(A0) There exists a measurable map G0 : IH+1/2
0+ (L2([0, T],Rd))→ E such that the following

two conditions hold.

(i) Let {hε : ε > 0} ⊂ AM for any M ∈ (0,∞). If hε converges to h in distribution as
SM-valued random elements, then

Gε
(
εHBH
· + εH/`

1
2 (ε)(RHhε)(·)

)
→ G0(RHh)

in law as ε→ 0, where {`ε}ε>0 are positive reals.

(ii) For each M ∈ (0,∞), the set {G0(RHh) : h ∈ SM} is a compact subset of E .

Proposition
If Xε· = Gε(εHBH

· ) and (A0) holds, then the family {Xε : ε > 0} satisfies the Laplace principle
(hence the LDP) on E with speed `(ε) and the rate function I given by

I(f ) = inf
{h∈H:f=G0(RH h)}

{
1
2
‖h‖2
H

}
, f ∈ E . (19)

Here we follow the convention that the infimum over an empty set is +∞.
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Below is a convenient and sufficient condition for verifying (A0)

(A1) There exists a measurable map G0 : IH+1/2
0+ (L2([0, T],Rd))→ E for which the following

two conditions hold.

(i) Let {hε : ε > 0} ⊂ AM for any M ∈ (0,∞). For each δ > 0,

lim
ε→0

P
(

d
(
Gε(εHBH

· + εH/`
1
2 (ε)(RHhε)(·)),G0((RHhε)(·))

)
> δ
)

= 0,

where d(·, ·) stands for the metric on E , {`ε}ε>0 are positive reals.

(ii) Let {hn : n ∈ N} ⊂ SM for any M ∈ (0,∞). If hn converges to some element h in SM as
n→∞, then G0(RHhn) converges to G0(RHh) in E .

Proposition
If Xε· = Gε(εHBH

· ) and (A1) holds, then the family {Xε : ε > 0} satisfies the Laplace principle
(hence the LDP) on E with speed `(ε) and the rate function I given by (19).
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Large deviation principle (LDP)
Introduce the following skeleton equation

Υh
t = x +

∫ t

0
b(s,Υh

s ,LX0
s
)ds +

∫ t

0
σ(s,LX0

s
)d(RHh)(s), t ∈ [0, T], (20)

where h ∈ H and X0 is given

X0
t = x +

∫ t

0
b(s,X0

s ,LX0
s
)ds, t ∈ [0, T].

As a consequence, we can define a map as follows

G0 : IH+1/2
0+ (L2([0, T],Rd)) 3 RHh 7→ Υh ∈ C([0, T];Rd). (21)

Our main result in this part reads as follows.

Theorem (LDP)
Assume that (H1) holds. For each ε > 0, let Xε = {Xεt }t∈[0,T] be the solution to equation (13).
Then the family {Xε : ε > 0} satisfies a LDP on C([0, T];Rd) with speed ε2H and the rate function
I given by (19), where G0 is defined in (21).
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Moderate deviation principle (MDP)

In this part, we shall investigate the MDP for the equation (13) as ε→ 0. The moderate
deviations problem for {Xε : ε > 0} is to study the asymptotics of

1
κ2(ε)

log P(Yε ∈ ·),

where κ(ε)→∞, εHκ(ε)→ 0 as ε→ 0 and

Yε :=
Xε − X0

εHκ(ε)
. (22)

Recall the equations (13) and (16), from which we deduce that Yε satisfies

Yεt =
1

εHκ(ε)

∫ t

0
(b(t,X0

s + εHκ(ε)Yεs ,LXεs )− b(s,X0
s ,LX0

s
))ds

+
1
κ(ε)

∫ t

0
σ(s,LXεs )dBH

s , t ∈ [0, T]. (23)
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Next, we put

G̃ε(·) :=
Gε(·)− X0

εHκ(ε)
,

which is a map from C([0, T];Rd) to C([0, T];Rd) such that Yε = G̃ε(εHBH
· ) due to the definition

of Gε and the relation Xε· = Gε(εHBH
· ). Moreover, for any hε ∈ AM , let

Yε,h
ε

· = G̃ε
(
εHBH
· + εHκ(ε)(RHhε)(·)

)
, (24)

then Yε,h
ε

solves the following equation

Yε,h
ε

t =
1

εHκ(ε)

∫ t

0

(
b(s,X0

s + εHκ(ε)Yε,h
ε

s ,LXεs )− b(s,X0
s ,LX0

s
)
)

ds

+

∫ t

0
σ(s,LXεs )d(RHhε)(s) +

1
κ(ε)

∫ t

0
σ(s,LXεs )dBH

s , t ∈ [0, T], P-a.s.. (25)
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In additional to (H1), we also need the following assumption.
(H2) The derivative ∇b(t, ·, µ)(x) exists and there is a non-decreasing function K̃(t) such that

for any t ∈ [0, T], x, y ∈ Rd, µ ∈ Pθ(Rd),

‖∇b(t, ·, µ)(x)−∇b(t, ·, µ)(y)‖ ≤ K̃(t)(|x− y|).

Now, for each h ∈ H, we introduce the following equation

Ξh
t =

∫ t

0
∇Ξh

s
b(s, ·,LX0

s
)(X0

s )ds +

∫ t

0
σ(s,LX0

s
)d(RHh)(s), t ∈ [0, T], (26)

which is used to give the rate function of Theorem 2.4 below. Under the time Hölder continuity of
σ with order belonging to (1− H, 1], the equation (26) admits a unique solution. Therefore, this
allows us to define a map as follows

G̃0 : IH+1/2
0+ (L2([0, T],Rd)) 3 RHh 7→ Ξh ∈ C([0, T];Rd). (27)

Theorem (MDP)
Assume that (H1) and (H2) hold. For each ε > 0, let Yε = {Yεt }t∈[0,T] be defined in (22). Then
the family {Yε : ε > 0} satisfies a LDP on C([0, T];Rd) with speed κ−2(ε) and the rate function I
given by

I(f ) = inf
{h∈H:f=G̃0(RH h)}

{
1
2
‖h‖2
H

}
, f ∈ C([0, T];Rd), (28)

where G̃0 is defined in (27).
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Central limit theorem (CLT)

This part is devoted to studying the CLT for equation (13). More precisely, we shall show that
Xε−X0

εH converges to a stochastic process in the pth-moment sense as ε→ 0. The limit process is
a solution to some linear equation which involves the Lions derivative of the coefficient b.
we will impose the following conditions on b and σ.

(H3) For every t ∈ [0, T], b(t, ·, ·) ∈ C1,(1,0)(Rd ×P2(Rd)), and there exists a non-decreasing
function K̄(t) such that

(i) for any t ∈ [0, T], x, y ∈ Rd, µ, ν ∈P2(Rd),

‖∇b(t, ·, µ)(x)‖+ |DLb(t, x, ·)(µ)(y)| ≤ K̄(t), ‖σ(t, µ)− σ(t, ν)‖ ≤ K̄(t)Wθ(µ, ν),

and |b(t, 0, δ0)|+ ‖σ(t, δ0)‖ ≤ K̄(t).

(ii) for any t ∈ [0, T], x, y, z1, z2 ∈ Rd, µ, ν ∈P2(Rd),

‖∇b(t, ·, µ)(x)−∇b(t, ·, ν)(y)‖+ |DLb(t, x, ·)(µ)(z1)− DLb(t, y, ·)(ν)(z2)|
≤ K̄(t)(|x− y|+ |z1 − z2|+ Wθ(µ, ν)).
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Our main result in this part is stated in the following theorem.

Theorem
Assume that (H3) holds, then for any p ≥ θ and p > 1/H,

E

(
sup

0≤t≤T

∣∣∣∣Xεt − X0
t

εH
− Zt

∣∣∣∣p
)
≤ CT,p,Hε

pH
(

1 + sup
t∈[0,T]

|X0
t |2p
)
, ε ∈ (0, ε0],

where Zt satisfies

Zt =

∫ t

0
∇Zs b(s, ·,LX0

s
)(X0

s )ds +

∫ t

0

(
E〈DLb(s, u, ·)(LX0

s
)(X0

s ), Zs〉
)
|u=X0

s
ds

+

∫ t

0
σ(s,LX0

s
)dBH

s , t ∈ [0, T], (29)

and ε0 > 0 is a constant which will appear in the proof.
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Proof of LDP
it is enough to check that (A1) holds with Gε,G0 and `(ε) given by (14), (21) and ε2H .

Lemma
Suppose that σ satisfies (H1) and µ ∈ C([0, T]; Pp(Rd)) with p ≥ θ and p > 1/H. Then there is
a constant CT,p,H > 0 such that

E

(
sup

t∈[0,T]

∣∣∣∣∫ t

0
σ(s, µs)dBH

s

∣∣∣∣p
)
≤ CT,p,H

∫ T

0
‖σ(s, µs)‖pds. (30)

The following lemma characterizes the difference between Xε and X0.

Lemma
Suppose that (H1) holds. Then for any p ≥ θ and p > 1/H, there exists a constant ε0 > 0 such
that for every ε ∈ (0, ε0],

E
(

sup
t∈[0,T]

∣∣∣Xεt − X0
t

∣∣∣p ) ≤ CT,p,Hε
pH
(

1 + sup
t∈[0,T]

|X0
t |p
)
.

dXεt = b(t, Xεt ,LXεt
)dt + ε

H
σ(t,LXεt

)dBH
t , Xε0 = x. X0

t = x +

∫ t

0
b(s, X0

s ,LX0
s
)ds, t ∈ [0, T].
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Proposition (To verify (A1) (i))
Suppose that (H1) holds and let {hε : ε > 0} ⊂ AM for any M ∈ (0,∞). Then, for any δ > 0,

lim
ε→0

P
(
‖Xε,h

ε

· − G0((RHhε)(·))‖∞ > δ
)

= 0,

where ‖ · ‖∞ is the uniform norm on C([0, T];Rd).

Proof. For each fixed ε > 0, we have

Xε,h
ε

t − G0((RHhε)(·))(t) = Xε,h
ε

t −Υhε
t

=

∫ t

0

(
b(s,Xε,h

ε

s ,LXεs )− b(s,Υhε
s ,LX0

s
)
)

ds

+

∫ t

0

(
σ(s,LXεs )− σ(s,LX0

s
)
)

d(RHhε)(s) + εH
∫ t

0
σ(s,LXεs )dBH

s , t ∈ [0, T].

Then, it follows that

|Xε,h
ε

t −Υhε
t |2 ≤3

∣∣∣∣∫ t

0

(
b(s,Xε,h

ε

s ,LXεs )− b(s,Υhε
s ,LX0

s
)
)

ds
∣∣∣∣2

+ 3
∣∣∣∣∫ t

0

(
σ(s,LXεs )− σ(s,LX0

s
)
)

d(RHhε)(s)
∣∣∣∣2

+ 3ε2H
∣∣∣∣∫ t

0
σ(s,LXεs )dBH

s

∣∣∣∣2 =: J1(t) + J2(t) + J3(t). (31)
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Lemma
Suppose that (H1) holds. Then for any M > 0,

sup
h∈SM

sup
t∈[0,T]

|Υh
t |2 ≤ CT,H,M ,

where CT,H,M is a positive constant only depending on T,H,M.

Proof.

|Υh
t |2 = |x|2 + 2

∫ t

0
〈Υh

s , b(s,Υh
s ,LX0

s
)〉ds + 2

∫ t

0
〈Υh

s , σ(s,LX0
s
)d(RHh)(s)〉

=: |x|2 + I1(t) + I2(t). (32)
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Proposition (To verify (A1)(ii))
Suppose that (H1) holds and let {hn : n ∈ N} ⊂ SM for any M ∈ (0,∞) such that hn converges
to element h in SM as n→∞. Then

lim
n→∞

sup
t∈[0,T]

|G0(RHhn)(t)− G0(RHh)(t)| = 0.

Proof. For each n ≥ 1, let Υhn
be the solution of equation (20) with h replaced by hn. By (21),

there hold G0(RHhn) = Υhn
and G0(RHh) = Υh.

1. We first prove that {Υhn}n≥1 is relatively compact in C([0, T];Rd). With the help of the
Arzelà-Ascoli theorem, it is enough to show that {Υhn}n≥1 is uniformly bounded and
equi-continuous in C([0, T];Rd).
a) By previous Lemma, there exists a constant CT,H,M > 0 such that

sup
n≥1

sup
t∈[0,T]

|Υhn

t | ≤ CT,H,M , (33)

which means that {Υhn}n≥1 is uniformly bounded in C([0, T];Rd).
b) Equi-continuous of {Υhn}n≥1 in C([0, T];Rd). By (20), we deduce that for 0 ≤ s < t ≤ T,

Υhn

t −Υhn

s =

∫ t

s
b(r,Υhn

r ,LX0
r
)dr +

∫ t

s
σ(r,LX0

r
)d(RHhn)(r). (34)
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2. Since {Υhn}n≥1 is relatively compact in C([0, T];Rd), any subsequence of {Υhn}n≥1, we can
extract a further subsequence (not relabelled) such that Υhn

converges to some Ῡ in
C([0, T];Rd).
3. To show that Ῡ = Υh. Then we can conclude that the full sequence Υhn

converges to Υh in
C([0, T];Rd), which is the desired assertion.
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Thank you very much for your kind attention!
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